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Statistical models

All models are wrong, but some are useful. (Box, 1999, p. 23)

Overview

Control charts are versatile statistical tools with a role to play in all four of the measure, analyse,

improve and control phases of Six Sigma projects. In order to develop control charts from run

charts, some understanding of statisticalmodels for both discrete and continuous randomvariables

is required, in particular of the normal or Gaussian statistical model. The normal distribution is

also fundamental in understanding of the concept of sigma quality level referred to earlier in

Section 1.1. Brief reference will also be made to the multivariate normal distribution. An under-

standing of statistical models in turn necessitates some fundamental knowledge of probability.

Finally, knowledge of the statistical properties of sums of independent random variables

yields important results concerning means and proportions – results that are vital for the

assessment of whether or not changes made during the improve phase of a Six Sigma project

have been effective, for an appreciation of the way in which the various sources of errors in

measurement processes contribute to the overall measurement error, and for an understanding

of the construction of control charts.

Unlike other chapters, this one includes a number of exercises at various points, some of

which do not require the use of Minitab. They are included to help the reader understand the

topics of probability and statistical models as they are developed. Solutions to these exercises

are provided on the book’s website.

4.1 Fundamentals of probability

4.1.1 Concept and notation

Probability theory developed in the seventeenth century due, to some extent, to the dialogue

between gamblers and mathematicians concerning the odds for games of chance involving
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dice and cards. Further impetus came from the development of astronomy in the eighteenth and

nineteenth centuries and thework ofmathematicians Gauss and Legendre on problems such as

the development of models for the orbits of comets. Subsequently the normal or Gaussian

probability distribution providedWalter Shewhart with the foundation for the control chart in

1924 andwas central to the development of inferential statistics byWilliamGosset andRonald

Fisher around the same time.

Consider an injection-moulding process for the manufacture of plastic golf tees that is

behaving in a stable, predictable manner and where we record successive tees as either sound

or defective. Suppose Table 4.1 summarizes findings as the recording of data progresses.

A plot of the relative frequency of sound tees against the logarithm to base 10 of the number

of tees tested is shown in Figure 4.1. (The sequence of numbers tested is 10, 100, 1000, etc.,

which may bewritten as 101, 102, 103, etc. The sequence of indices 1, 2, 3, etc. is the sequence

of logarithms to base 10 of the sequence of numbers tested in the first column.)

For small numbers tested, the relative frequency is unstable but, as the number tested

becomes large, the relative frequency stabilizes at around 0.8. For this test there are two

outcomes; the tee is either sound (S) or defective (D). The set of possible outcomes {D, S} is

called the sample space for the testing of a tee. The value 0.8 can be assigned as the probability

Table 4.1 Relative frequencies of sound tees.

Number tested, n Number sound, f Relative frequency, f/n

10 9 0.900 000

100 85 0.850 000

1 000 780 0.780 000

10 000 7 952 0.795 200

100 000 80 042 0.800 420

1 000 000 799 631 0.799 631

Figure 4.1 Relative frequency of sound tees.
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of the outcome that a tee is sound. One can write in shorthand P(S)¼ 0.8. A little reflection

should convince the reader that the relative frequency of defective tees would stabilize at 0.2.

Therefore, P(D)¼ 0.2. The total of the probabilities assigned to the outcomes in a sample

space is 1.

If a conventional cubic die is rolled then the sample space is {1, 2, 3, 4, 5, 6}, where the

integers represent the number showing on the uppermost face of the diewhen it comes to rest. It

is natural to assign probability 1/6 to each of the six outcomes since one would expect the

relative frequency of each outcome to stabilize at the same value and the total of the six

probabilities is 1. An event is defined as a subset of the sample space. For example, the subset

A¼ {2, 4, 6} of the sample space above is the event of rolling an even number. The probability

of an event is the sum of the probabilities of the constituent outcomes. (Note that an event may

consist of a single outcome.) Thus PðAÞ ¼ 1=6þ 1=6þ 1=6 ¼ 1=2. This means that in a long

sequence of rolls of a die one would expect the relative frequency of an even result to stabilize

at 0.5. Probability is a measure on a scale of 0 to 1 inclusive and may be considered as ‘long-

term’ relative frequency of occurrence. If the probability of an event is 0 then it is impossible

for the event to occur. If the probability of an event is 1 then the event is certain to occur.

Let us denote by PðA [ BÞ the probability of either event A or event B (or both) occurring

is denoted PðA [ BÞ, and by PðA \ BÞ the probability of both event A and event B occurring.

(The ‘cup’ [ and ‘cap’ \ symbols are the union and intersection symbols used in the

mathematics of sets. An informal way to remember that the \ symbol corresponds to both . . .

and . . . is to think of fish \ chips!)

If for the rolling of a die the event B is defined as the score being a multiple of 3, then

B¼ {3, 6} so thatA[B¼ {2, 3, 4, 6} andA\B¼ {6}. The complement of eventA, denoted by
�A and referred to as the event ‘not-A’, is the non-occurrence ofA. Here �A ¼ f1; 3; 5g. The event
B j A (‘B given A’) is the event that B occurs, knowing that A has occurred. Thus, for the

example, it is the event that the score is a multiple of 3, given the information that it is an even

number. Knowing that A has occurred, we are dealing with the reduced sample space

consisting of the outcomes 2, 4 and 6, so we assign revised probabilities of one-third to each

of these. Hence, PðBjAÞ ¼ 1=3 since, of the three outcomes in the reduced sample space, only

one is a multiple of 3. You should verify that PðAjBÞ ¼ 1=2.

Exercise 4.1 LetC be the event that the score is a prime number, so thatC¼ {2, 3, 5}. Write

down PðCÞ;PðAjCÞ;PðBjCÞ;PðCjAÞ and PðA \ CÞ.

4.1.2 Rules for probabilities

There are various rules for combining probabilities. Three fundamental ones will

be considered.

Rule 1. Pð�EÞ ¼ 1�PðEÞ.
For the example of the die above, PðBÞ ¼ 1=3, so Rule 1 yields Pð�BÞ ¼ 1�PðBÞ ¼ 2=3. This
means that the probability of a result that is not a multiple of three is 2=3. This can be taken

as an indication that out of every, say, 300 rolls of a die, one could expect two thirds of the rolls,

i.e. 200 rolls, to yield results that are not multiples of three.

If the eventE1 \ E2 ¼ f g, the empty set, then the events E1 and E2 are said to bemutually

exclusive. In this case PðE1 \ E2Þ ¼ 0, i.e. when E1 and E2 are mutually exclusive it is

impossible that both occur simultaneously.
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Rule 2. If the events E1 and E2 are mutually exclusive then

PðE1 [ E2Þ ¼ PðE1ÞþPðE2Þ:

Thus when dealing with an either . . . or situation formutually exclusive events one must

add probabilities.

In order to introduce the third rule referencewill be made again to the Pulse.MTW data set

encountered in the previous chapter. The description of the data set displayed in Panel 4.1 may

be accessed usingHelp>Help, clicking on the Search tab, entering Pulse in the Type in the

word(s) to search for: window, clicking the List Topics button and then double-clicking on

PULSE.MTW in the list of topics.

With the worksheet PULSE.MTW open, use of Stat>Tables>Tally Individual

Values. . . , with Ran entered underVariables: and bothCounts and Percent checked, yields

the Session window output displayed in Panel 4.2. This indicates that 35 of the 92 students in

the class ran. As the decisionwhether or not to runwasmeant to be based on the outcome of the

toss of a coin, one would expect the relative frequency of heads to have been approximately

0.50 while in fact it was 0.38, to two decimal places. (Did some students cheat through not

running in place in spite of obtaining a head on their coins? This type of question will be

addressed formally in Chapter 7.)

Students in an introductory statistics course participated in a simple experiment. Each student 

recorded his or her height, weight, gender, smoking preference, usual activity level, and resting 

pulse. Then they all flipped coins, and those whose coins came up heads ran in place for one 

minute. Then the entire class recorded their pulses once more. 

Column Name Count Description 

C1 Pulse1 92 First pulse rate

C2 Pulse2 92 Second pulse rate

C3 Ran 92 1 = ran in place

C4 Smokes 92 1 = smokes regularly 

2 = does not smoke 

regularly

C5 Sex 92 1 = male 

2 = female

C6 Height 92 Height in inches

C7 Weight 92 Weight in pounds

C8 Activity 92 Usual level of physical 

activity: 

1 = slight 

2 = moderate 

3 = a lot 

2 = did not run in place

Panel 4.1 Description of the Pulse.MTW data set.
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Use of Stat>Tables>Cross Tabulation and Chi-Square. . . with Categorical vari-

ables: specified as For rows: Sex and For cols: Smokes, with Counts and Row percents

checked, yields the table in Panel 4.3. The value 1 for the variable Sex indicates a male and

the value 1 for the variable Smokes indicates a regular smoker. Thus, to the nearest whole per

cent, 30% of the students smoked regularly, while 23% of the female students smoked

regularly and 35% of the male students smoked regularly. Is smoking gender-dependent? If

PðE2jE1Þ ¼ PðE2Þ thenwe say that the eventsE1 andE2 are independent. LetS denote the event

that a student is a regular smoker and letF denote the event that a student is female. If we regard

the 92 students as a sample from a population of students then we have the estimates

PðSÞ ¼ 30% ¼ 0:30 and PðSjFÞ ¼ 23% ¼ 0:23. The fact that these two estimates differ

suggests that smokingmight be gender-dependent in the student population. Formal assessment

of dependence will be considered in Chapter 10.

Rule 3. If the events A and B are independent then

PðA \ BÞ ¼ PðAÞ � PðBÞ:

Thus when dealing with a both . . . and situation for independent events onemustmultiply

probabilities.

Consider blood groups in the UK population. The mutually exclusive groups are O, A, B

and AB with respective probabilities 0.46, 0.42, 0.09 and 0.03 (British Broadcasting

Corporation, 2004). Thus, for example, the probability that a randomly selected member

of the population has blood of group either A or B is 0.42 þ 0.09¼ 0.51. The rhesus factor is

Tally for Discrete Variables: Ran  

Ran  Count  Percent 

  1     35    38.04 

  2     57    61.96 

 N=     92 

Panel 4.2 Tally of variable Ran.

Tabulated statistics: Sex, Smokes  

Rows: Sex   Columns: Smokes 

           1      2     All 

1         20     37      57 

       35.09  64.91  100.00 

2          8     27      35 

       22.86  77.14  100.00 

All       28     64      92 

       30.43  69.57  100.00 

Cell Contents:      Count 
                    % of Row

Panel 4.3 Cross-tabulation of Sex and Smokes.
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present in the blood of 85% of the UK population and absent from the blood of the remainder

of the population. Those with the factor present are said to be rhesus positive, while those

with the factor absent are said to be rhesus negative. The presence or absence of the rhesus

factor is independent of blood group. The author is ‘O rhesus negative’. We have

PðRhesus positiveÞ ¼ 0:85, so by Rule 1,

PðRhesus negativeÞ ¼ 1� 0:85 ¼ 0:15:

By Rule 3,

PðBoth O and rhesus negativeÞ ¼ PðOÞ � PðRhesus negativeÞ ¼ 0:46� 0:15 ¼ 0:069:

Thus just less than 7% of the UK population are O rhesus negative.

The multiplication rule for the combination of probabilities of independent events can be

applied to systems made up of a series of subsystems or processes that function independently

of each other. Figure 4.2 depicts a system comprising two subsystems, A and B. Let the

probability that each of the subsystems functions correctly be 0.9. Assuming independence,

the multiplication rule yields probability 0:9� 0:9 ¼ 0:81 that the overall system functions

correctly. This probability of 0.81 is often referred to as the reliability of the system.With three

such subsystems the reliability would be 0:9� 0:9� 0:9 ¼ 0:93 ¼ 0:729.
Reference was made in Chapter 1 to the concept of sigma quality level (or sigma) for a

process. Consider a system consisting of 10 independent subsystems where each of the

subsystems is created by a process operating with a sigma quality level of 3. As can be seen

from Appendix 1, a sigma quality level of 3 corresponds to 66 811 nonconformities per

million, which equates to a probability of 1� 66 811

1 000 000
¼ 0:933 189 that each subsystem

functions correctly. The reliability of the system would be 0.933 18910 ¼ 0:5008, to four

decimal places. Thus only 50% of the systemswould function correctly. (This calculationmay

be performed inMinitab usingCalc>CalculatorwithExpression: 0.933 189��10 and Store
result in variable: Answer. The result may then be read from the column named Answer

created in the current worksheet.)

Exercise 4.2 A system consists of 1000 subsystems each of which is produced by a Six

Sigma process, i.e. a process with sigma quality level 6. Verify that the relative frequency of

system failure is 3 in 1000.

A key contributor to the development of Six Sigma atMotorolawas senior quality engineer

Bill Smith. One product he worked on had a much higher failure rate than predicted, despite

great care having been taken during its design.

Smith came to realize that it was the accumulation of a lot of little defects made

during the manufacturing process – not inherent design flaws – that caused the

Figure 4.2 System with two subsystems.
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high rate of early-life failures. Eliminating the source of those defects was

therefore the only way the company could deliver higher quality to its customers.

(Reynard, 2007, p. 23)

Thus appreciation of the relevance of probability calculations such as that in Exercise 4.2 to the

need for low failure rates amongst the large number of individual components in complex

systems, such as a cellular telephone, is key.

4.2 Probability distributions for counts and measurements

4.2.1 Binomial distribution

Consider a situation where there is constant probability p that an item produced by a process is

nonconforming. LetD denote a nonconforming item and S denote a conforming item. Thus we

have P(D)¼ p andP(S)¼ 1� p (by Rule 1), which will be denoted by q. Suppose that samples

of n¼ 2 items are selected at random from the process output. The sample space consists of the

four sequences SS, SD, DS, DD where, for example, the sequence DS represents the outcome

that the first item selected was nonconforming and the second was conforming. Rule 3 gives

the probabilities of the above four outcomes as qq or q2, qp, pq and pp or p2, respectively.

The number of nonconforming items in samples of n¼ 2 items is a count or, more

formally, a discrete random variable. It is conventional to use an upper-case letter to denote a

random variable and the corresponding lower-case letter to denote a specific value that

random variable may take. Let the number of nonconforming items in samples of two items

be denoted by X. Thus specific values of X will be denoted by x. Table 4.2 demonstrates the

calculation of the probability that a random sample of two items includes precisely x

nonconforming items for x¼ 0, 1 and 2. Thus P(X¼ 0)¼ q2, P(X¼ 1)¼ 2qp (note use of

Rule 2) and P(X¼ 2)¼ p2. The probability function for a discrete random variable is

typically denoted by f(x) and is defined as:

PðX ¼ xÞ ¼ f ðxÞ:
The probability function in Table 4.3 is for the specific case of samples of n¼ 2 and for

probability p¼ 0.2, i.e. where 20% of items are nonconforming.

Exercise 4.3 Tabulate the probability functions for the cases where n¼ 2 and p¼ 0.5 and

where n¼ 2 and p¼ 0.7.

Note that in all cases the sum of the probabilities is 1. This must always be the case for a

probability function for a discrete random variable. In general the fact that the probabilities

Table 4.2 Derivation of probabilities.

No. of nonconforming items,

x, in sample of two

Outcomes yielding x

nonconforming items

Probability that sample includes

x nonconforming items

0 SS qq¼ q2

1 Either SD or DS qp þ pq¼ 2qp

2 DD pp¼ p2
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sum to 1 may be demonstrated as follows, use being made of the fact that since q ¼ 1� p then

qþ p ¼ 1:

q2 þ 2qpþ p2 ¼ ðqþ pÞ2 ¼ 12 ¼ 1:

Since the two-term expression qþ p is referred to as a binomial expression in mathematics,

this type of discrete probability distribution is referred to as a binomial distribution. In order

to specify the distribution, the number of items tested or number of trials, n, and the constant

probability, p, that an individual item is nonconforming are required. The numbers n and p

are referred to as the two parameters of the distribution. The short-handB(n, p) is used for the

binomial distribution with parameters n and p and the short-hand X�B(n, p) is used to

indicate that the random variable X has the specified binomial distribution.

Minitab provides a facility for the calculation of binomial and other widely used

probability functions. Having set up and named columns C1 and C2 as indicated in

Figure 4.3, Calc>Probability Distributions>Binomial. . . , with the Probability option

selected, may be used to reproduce the probabilities in Table 4.3. Number of trials: was

specified as 2 andEvent probability: as 0.2. Input column: specifies the column, named x,

containing the values of the random variable for which probabilities are to be calculated and

Optional storage: ‘f(x)’ indicates where the probabilities are to be stored. (Recall that the

column named f(x) may be selected for storage by highlighting and left clicking or by typing

the column name enclosed in single quotes.) The probability function is displayed as a bar

chart in Figure 4.4.

Figure 4.3 Obtaining binomial probabilities.

Table 4.3 Probability function.

x f(x)

0 0.64

1 0.32

2 0.04
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When the parameter p is less than 0.5 the distribution is positively skewed as in Figure 4.4.

When p¼ 0.5 the distribution is symmetrical and when p is greater than 0.5 the distribution is

negatively skewed. The display in Figure 4.4 was created usingGraph>Bar Chart. . . – see

the dialog in Figure 4.5.Bars represent:Values from a tablewas selected initially followed by

Simple under One column of values. The column of probabilities f(x) was selected under

Graph variables: andCategorical variable: x for the horizontal axis.Labels. . . was used to

create the title B(2, 0.2) distribution. The vertical scale was altered to have maximum value 1,

since a probability cannot exceed 1. (The alteration was made by double-clicking on the

vertical scale, selecting the Scale tab and, under Scale Range, unchecking Auto for

Maximum and entering the value 1 in the appropriate window.)

Figure 4.4 Display of B(2, 0.2) probability function.

Figure 4.5 Creating display of B(2, 0.2) distribution.
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Exercise 4.4 Use Minitab to tabulate and display the probability functions of the B(2, 0.5)

and B(2, 0.7) distributions. Compare the values of the probability functions with your answers

to Exercise 4.3.

In addition to the probability function, f(x), for a discrete random variable, X, the

cumulative probability function F(x) is important. This is given by

FðxÞ ¼ PðX � xÞ:
For the B(2, 0.2) distribution tabulated Table 4.2 we have:

Fð0Þ ¼ PðX � 0Þ ¼ PðX ¼ 0Þ ¼ f ð0Þ ¼ 0:64;
Fð1Þ ¼ PðX � 1Þ ¼ Pðeither X ¼ 0 or X ¼ 1Þ

¼ PðX ¼ 0ÞþPðX ¼ 1Þ ¼ f ð0Þþ f ð1Þ ¼ 0:64þ 0:32 ¼ 0:96;
Fð2Þ ¼ PðX � 2Þ ¼ Pðeither X � 1 or X ¼ 2Þ

¼ PðX � 1ÞþPðX ¼ 2Þ ¼ Fð1Þþ f ð2Þ ¼ 0:96þ 0:04 ¼ 1:

Both the probability function and the cumulative probability function are tabulated

in Table 4.4.

You should check the distribution function, F(x), using Minitab by selecting the Cumu-

lative probability option in the dialog box displayed in Figure 4.3. The software does not

distinguish between f(x) and F(x) as column names so one could give the name F.(x) to column

C3 and then use it for storage of the results. In plain English, f(1) gives the probability that a

sample includes precisely one nonconforming item whereas F(1) gives the probability that a

sample includes one or fewer nonconforming items. In general the probability function, f(x),

gives the probability that a sample includes precisely x nonconforming items, while the

cumulative probability function, F(x), gives the probability that a sample includes x or fewer

nonconforming items.

Exercise 4.5 From the tables created in answering Exercise 4.3 tabulate the cumulative

probability function F(x) for the B(2, 0.5) and B(2, 0.7) distributions. Check your answers

using Minitab.

Suppose that the process referred to above continues to produce items with constant

probability of 0.2 that an item is nonconforming and that it is decided to monitor the process

by taking samples of n¼ 25 items at regular intervals. Grass-roots calculation of the

probability function in this case would be very tedious indeed. Mathematical formulae are

available but will not be introduced here. If required, the probability function and the

cumulative probability function can be obtained using Minitab. One would use Calc>
Probability Distributions>Binomial. . . as in Figure 4.3 with the values 0, 1, 2, . . . , 24, 25

set up in column C1 and the Number of trials specified as 25 in order to tabulate the

Table 4.4 Functions for B(2, 0.2) distribution.

x f(x) F(x)

0 0.64 0.64

1 0.32 0.96

2 0.04 1.00
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probability function. This function is displayed in Figure 4.6, with the minimum set to 0 on

the vertical scale.

Note that it would be rare to obtain a sample includingmore than 10 nonconforming items.

The most likely number of nonconforming items is 5, and this value is known as the mode of

the distribution.

What might a run chart of a typical series of counts of numbers of nonconforming items

in samples of 25 look like?Minitab enables random data from awide variety of distributions

to be generated. Having assigned No. N-C as the name of column C1, one can use

Calc>Random Data>Binomial. . . as indicated in Figure 4.7. By specifyingNumber of

Figure 4.6 Display of B(25, 0.2) distribution.

Figure 4.7 Generating data from the B(25,0.2) distribution.
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rows to generate: 30 we are indicating that we wish to simulate the selection of 30 samples

of n¼ 25 items from a population of items in which there is probability p¼ 0.2 that an item

is nonconforming. No. N-C is selected for Store in column(s): and the distribution

parameters n¼ 25 and p¼ 0.2 are specified as before.

A run chart of a data set generated by the author in this manner is displayed in Figure 4.8.

Since data have been simulated here for a stable, predictable process with constant proba-

bility 0.2 of an item being nonconforming it should be no surprise that none of the P-values

are less than 0.05 and that therefore there is no evidence of any variation other than

common cause variation. The mean and standard deviation of the 30 counts were 4.700 and

1.535, respectively.

Table 4.5 gives the means and standard deviations for longer and longer series of samples

of simulated counts for the same stable, predictable process. It is possible to imagine the

sampling being continued ad infinitum. The resulting conceptual infinity of counts is known as

the population. The long-term mean as sampling continues is denoted by m and is called the

expected value or population mean of the random variable X, the number of nonconforming

items in samples of 25. The long-term mean of ðX�mÞ2 is denoted by s2 and is called the

Figure 4.8 Run chart of the data.

Table 4.5 Means and standard deviations for simulated series

of samples.

No. of samples Mean Standard deviation

30 4.7000 1.5350

100 5.0500 1.8880

1 000 5.0640 2.0100

10 000 4.9968 2.0067

100 000 4.9996 1.9997
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variance of the population; s is the standard deviation of the population. In standard

statistical notation:

Population mean m ¼ Expected value of X ¼ E½X�;
Population variance s2 ¼ Expected value of ðX�mÞ2 ¼ E½ðX�mÞ2�:

Statistical theory provides important results for the B(n, p) distribution:

m ¼ np; s2 ¼ npq; s ¼ ffiffiffiffiffiffiffiffi

npq
p

:

Substitution of n¼ 25, p¼ 0.2 and q¼ 1 � p¼ 0.8 into the above formulae yields 5 and 2

for the population mean and standard deviation, respectively. This is in accord with the

sequences of sample means and standard deviations obtained from the simulations and

displayed in Table 4.5. The column of means appears to be ‘homing in’ on the expected

value 5 and the column of standard deviations on the expected value 2. The binomial

distribution provides the basis for two widely used control charts to be introduced in

Chapter 5.

Exercise 4.6 A public utility company believes that currently 10% of billings of private

customers are posted out after the scheduled date. Suppose that samples of 250 of the accounts

posted eachworking day are checked for delay in posting. Denote byX the number of accounts

in the sample which are posted after the scheduled date.

(i) State the distribution of X and its parameters.

(ii) Calculate the mean and standard deviation of X.

(iii) Simulate data for 50 days, display it in a run chart, obtain the mean and standard

deviation of the 50 daily counts and compare with your answers to (ii).

(iv) Repeat (iii) for 500 days and for 5000 days.

(v) Obtain the probability that a sample contains fewer than 15 delayed accounts.

4.2.2 Poisson distribution

Scrutiny of the menu under Calc>Probability Distributions reveals a total of 24

distributions available to provide statistical models! Distributions that model count data –

in other words, that model discrete random variables – are the binomial, hypergeometric,

discrete, integer and Poisson. The hypergeometric distribution has important applications

in acceptance sampling and is referred to later in this chapter. From the point of view of

quality improvement the two most important discrete distributions are the binomial

and Poisson.

The Poisson distribution is named in honour of the French mathematician Sim�eon Denis

Poisson and may be used to model situations where a discrete random variable X may take

any of the integer values 0, 1, 2, 3, . . . , with no upper limit on the range of possible values.

The Poisson distribution has a single parameter, usually denoted by the Greek letter l

(lambda). Both the mean and variance of the distribution are equal to l. Thus the standard

deviation is
ffiffiffi

l
p

.
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The Poisson distribution provides an important model for counts of random events in both

time and space. During the SecondWorldWar the city of London was attacked by German V2

flying bombs. In order to assess the ability of the Germans to aim at specific targets, British

scientists divided the city into a set of 576 squares, each of side 0.5 km. The number of V2

bomb hits per square was counted, yielding the following frequency table displayed in

Table 4.6 (data reproduced by permission of the Institute and Faculty ofActuaries fromClarke,

1946, p. 481).

In order to fit the Poisson model to this data set an estimate of the model parameter is

required. The Poisson parameter l is equal to the mean, so the mean number of hits per square

will provide an estimate of this parameter. A convenient way to input the data intoMinitab is to

first name columnC1 in a newworksheet No. Hits, make the Session window active, select the

Editormenu and checkEnable Commands. The software responds by presenting the prompt

MTB> in the Sessionwindow. The user is now able to ‘drive’ using session commands aswell

asmenu commands. The SET command nowbe used to input the data as indicated in Panel 4.4.

Note, for example, that the notation 93(2) indicates that 93 values of 2 for the number of hits

were obtained. The single value of 7 for the number of hits could have been indicated by 1(7)

but the solitary 7 is sufficient.

Table 4.6 Frequency of V2 bomb hits.

No. hits 0 1 2 3 4 5 6 7 �8

No. squares 229 211 93 35 7 0 0 1 0

MTB > set c1 

DATA> 229(0) 211(1) 93(2) 35(3) 7(4) 7 

DATA> end 

MTB > Tally 'No. Hits'; 

SUBC>   Counts. 

Tally for Discrete Variables: No. Hits  

 No. 

Hits  Count 

   0    229 

   1    211 

   2     93 

   3     35 

   4      7 

   7      1 

  N=    576 

MTB > Describe 'No. Hits'; 

SUBC>   Mean; 

SUBC>   Count. 

Descriptive Statistics: No. Hits  

          Total 

Variable  Count    Mean 

No. Hits    576  0.9323 

Panel 4.4 Input and analysis of V2 bomb data.
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Having input the data, the author then used the Stat menu and Stat>Tables>Tally

Individual Values. . . to check the input. The session commands corresponding to the

menu actions appear in the Session window. Finally, Basic Statistics>Display Descriptive

Statistics. . . from the Statmenu was used, withMean andN total selected via Statistics. . . ,

to obtain the mean number of hits.

The mean of 0.9323 can be used to compute Poisson probabilities viaCalc>Probability

Distributions>Poisson. . . . The Poisson model gives the probability of no hits in a square to

be 0.393 647, so the expected frequency of squares with no hits is 576� 0.393 647¼ 226.7

correct to one decimal place. This is very close to the observed frequency of squares with no

hits, 229. The expected frequencies for 1, 2, 3, 4, 5, 6 and 7 hits per square may be calculated in

a similar fashion. Use of the Cumulative probability facility with 7 entered in the Input

constant: box yields F(7)¼P(X� 7)¼ 0.999 99 so P(X� 8)¼ 1 � 0.999 99¼ 0.000 01.

Hence the expected frequency of squares with 8 or more hits is 576� 0.000 01¼ 0.0 correct

to one decimal place. Table 4.7 gives the summarized results.

The bar chart in Figure 4.9 highlights how well the Poisson distribution models the

situation. (A follow-up exercise will indicate how such charts may be created using Minitab.)

The good fit of the Poisson distribution with parameter 0.9323, i.e. of the P(0.9323)

distribution in shorthand, indicated that the V2 impacts were occurring at random locations

within the city and thus provided evidence to the scientists that the flying bombs were not

equipped with a sophisticated guidance system.

Table 4.7 Observed and expected frequency of V2 bomb hits.

No. Hits 0 1 2 3 4 5 6 7 �8

Observed No. Squares 229 211 93 35 7 0 0 1 0

Expected No. Squares 226.7 211.4 98.5 30.6 7.1 1.3 0.2 0.0 0.0

Figure 4.9 Comparison of observed and expected frequencies.
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The Poisson distribution often provides a statisticalmodel for counts of events occurring at

random in either space or time, e.g. the number of nonconformities on a printed circuit board or

the number of line stoppages per month in a factory. As with the binomial distribution, it

provides the basis for two very important types of control chart to be introduced in Chapter 5.

4.2.3 Normal (Gaussian) Distribution

The normal distribution is central in the application of statistical methods in quality

improvement and in understanding the concept of sigma quality level within Six Sigma

programmes. The name ‘normal’ is unfortunate in that it suggests that such distributions are to

be expected as some sort of norm. Some authors refer to it as the Gaussian distribution in

honour of the Germanmathematician, Karl Friedrich Gauss. The normal distribution provides

a model for continuous random variables. To introduce the normal distribution use will be

made of the bottleweight data that is available inWeight1A.MTWandwas displayed in Figure

2.22 in Chapter 2.

In the histogram in Figure 4.10 a different set of bins was used from that used in Figure

2.22. The bins for the histogram in Figure 4.10were bounded by thevalues 483.0, 485.0, 487.0,

489.0, 491.0, 493.0 and 495.0. The first bin range from483.0 to 485.0 has a range of 2 and there

was a single bottle from the sample of 25 with weight in this range. The relative frequency of

weight in this range for the sample was therefore 1=25 ¼ 0:04. This relative frequency

provides an estimate of the probability that a bottle from the population of bottles sampled has

weight in the corresponding bin range. Thus a probability of 0.04 spread over a range of 2 is

equivalent to a probability of 0.02 spread over a range of 1; the probability density

corresponding to the first bin is 0:04=2 ¼ 0:02. You should verify that the probability densities
corresponding to the remaining bins are 0.08, 0.14, 0.16, 0.04 and 0.06. Minitab offers the

option of displaying a density histogram of the weight data, in which the height of the bars

corresponds to probability density rather than frequency. This histogram is shown in

Figure 4.10 Frequency histogram of bottle weights.
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Figure 4.11. Note that the vertical scale now represents density as opposed to frequency. Some

properties of the density histogram are given in Table 4.8. The areas of the bars were obtained

by multiplying width by height. It should be borne in mind that the histograms are not drawn

to scale!

If the probability that a bottle weight is less than or equal to, say, 487 g is required then it

may be estimated from the data via the histogram as follows:

PðWeight � 487Þ
¼ PðEither weight lies in bin 483; 485 or weight lies in bin 485; 487Þ
¼ PðWeight lies in bin 483; 485ÞþPðWeight lies in bin 485; 487Þ
¼ 0:04þ 0:16
¼ 0:20:

Thus the estimated probability that a bottle weight is less than or equal to 487 g is the shaded

area indicated in the density histogram in Figure 4.12.

Figure 4.11 Density histogram of bottle weights.

Table 4.8 Properties of the density histogram of weight.

Weight bin range Histogram

bar width

Histogram

bar height

Histogram

bar area

483–485 2 0.02 0.04

485–487 2 0.08 0.16

487–489 2 0.14 0.28

489–491 2 0.16 0.32

491–493 2 0.04 0.08

493–495 2 0.06 0.12

Total area of histogram 1.00
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A further option available for histograms inMinitab is the fitting of a normal distribution.

The curve in Figure 4.13 is the probability density function of the fitted normal distribution.

The parameters of the fitted distribution are the sample mean and sample variance. It

appears that the normal distribution provides a reasonable model for the random variable

bottle weight.

The probability density function f(x) for a continuous random variable,X, can never be less

than 0 and is such that the total area it encloses with the horizontal axis is 1. This value of 1

represents total probability. The cumulative probability function F(x) gives PðX � xÞ. A

Figure 4.12 Shaded area gives P(Weight� 487).

Figure 4.13 Normal distribution fitted to bottle weight data.
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normal distribution is specified by two parameters: the mean and the variance. The normal

distribution with mean 0 and variance 1 is referred to as the standard normal distribution.

Because of the central role in statistics of the standard normal distribution its probability

density function and its cumulative probability function are denoted by the special functions

f(x) andF(x), respectively. The letters f andF are the lower- and upper-case Greek letters

phi. Tables of the function F(x) are available but with Minitab you will have no need

for them.

The sample mean and sample variance for the bottle weight data are 489.2 and 2.5092

respectively, and these are the parameters used for the fitted normal distribution shown in

Figure 4.13. In shorthand this distribution is denoted by N(489.2, 2.5092). (As with the

binomial and Poisson distributions, the letter in front of the brackets indicates the

distribution type and the numbers within the brackets are the parameters.) In order to

obtain from the model the probability PðWeight � 487Þ ¼ Fð487Þ, the cumulative prob-

ability function has to be evaluated for 487. This may be obtained usingCalc>Probability

Distributions>Normal. . . . Note that the cumulative probability function and the standard

normal distribution are the defaults. The value of interest, 487, is entered in the Input

constant: window. The appropriate mean and standard deviation must be specified in the

Mean: and Standard deviation: windows respectively. The dialog is completed as shown

in Figure 4.14.

The Session window output is shown Panel 4.5. This indicates that the fitted normal

distribution model gives F(487)¼ 0.190 286, i.e. the probability of a bottle weight of 487 g or

less is 0.19 to two decimal places. This agrees quite closely with the empirical probability of

0.20 represented by the shaded area in Figure 4.13. In fact the evaluation of the cumulative

probability function involves calculation of the area under the probability density function

lying to the left of 487. This area is shaded in Figure 4.15.

In Chapter 2 specification limits of 485 and 495 g for bottle weight were indicated. The

fitted model may be used to estimate the proportion of bottles meeting those requirements.

You should verify, using dialogs similar to that in Figure 4.14, that F(485)¼ 0.0471 and that

Figure 4.14 Evaluation of cumulative probability function for a normal distribution.
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F(495)¼ 0.9896 to four decimal places. The probability that a bottle weight lies between 485

and 495 is therefore 0.9896 � 0.0471¼ 0.9425.

This result may also be obtained using Graph>Probability Distribution Plot. . . >
View Probability. On double-clicking the graphic underView Probability, select Normal in

the Distribution: window and enter Mean: 489.2 and Standard deviation: 2.509. On the

Shaded Area tab, withDefine Shaded Area By X Value selected, click on the graphic under

Middle and enter the lower and upper specification limits 485 and 495 for bottle weight in the

X_value 1: and X_value 2: boxes, respectively. The graph in Figure 4.16 results, confirming

the required probability as 0.9425.

Thus the model predicts that 94.25% of bottles from the process would conform to

requirements on weight. The proportion nonconforming is therefore estimated to be 6.75% or

67 500 per million. Reference to Appendix 1 indicates the sigma quality level to be

approximately 3. (The sample size of 25 is small, so in practice estimates based on such

samples should be viewed with some caution.)

Earlier it was stated that the normal distribution appears to provide a reasonable model

for the randomvariable bottleweight in view of themanner inwhich the curve (themodel) in

Figure 4.13 fitted the data (the histogram). In order to make a formal assessment whether or

not a normal distribution provides a satisfactory model, the normality test provided

in Minitab may be used. The points in the associated plot should be reasonably linear and

Cumulative Distribution Function  

Normal with mean = 489.2 and standard deviation = 2.509 

  x  P( X <= x ) 

487     0.190286 

Panel 4.5 Evaluation of cumulative probability function for a normal distribution.

Figure 4.15 Area representing cumulative probability function.
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a P-value in excess of 0.05 is usually taken to mean that a normal distribution may be

accepted as a satisfactory model. The normality test is available via Stat>Basic Statistics

>Normality Test. . . . The output obtained with the default options is shown in Figure 4.17.

WithP-valuewell in excess of 0.05 the normal distributionmodel is clearly acceptable. (The

AD value quoted is the Anderson–Darling test statistic. Test statistics will be explained in

Chapter 7.)

Consider now the conduct of interviews by a researcher undertaking a customer satis-

faction survey. Suppose that the duration, inminutes, of interviews can be adequatelymodelled

by the N(40, 82) distribution, i.e. by the normal or Gaussian distribution with mean 40 and

Figure 4.17 Normality test of bottle weight data.

Figure 4.16 Area representing proportion of bottles conforming to weight specifications.
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Figure 4.18 Evaluation of a series of normal cumulative probability function values.

variance 82, standard deviation 8. Minitab can be used to obtain the probabilities that

interviews last between 32 and 48minutes, between 24 and 56minutes, and between 16

and 64minutes.

Here the cumulative probability function is required for six different values of the

random variable of interest, the duration of an interview. These six values can be entered into

a column in Minitab and the corresponding cumulative probabilities stored in a second

column, named F(x) in advance of the calculations being performed. The dialog is displayed

in Figure 4.18.

The probability that duration lies between 32 and 48minutes is

Pð32 < X � 48Þ ¼ Fð48Þ�Fð32Þ
¼ 0:841 345� 0:158 655 ðfrom the FðxÞ column in the worksheetÞ
¼ 0:6827 to four decimal places;

or about two-thirds. The durations of 32 and 48 are one standard deviation below and above the

mean respectively. The calculation demonstrates the feature of the normal distribution that

approximately two thirds of observed values are within one standard deviation of the mean.

You should verify that that approximately 95% of values are within two standard deviations of

the mean, i.e. between 24 and 56 (probability 0.9545), and that 99.73% of values are within

three standard deviations of the mean, i.e. between 16 and 64minutes. Thus it would be very

rare (probability 0.0027) for an interview to have duration outside the range 16minutes to

64minutes, i.e. outside the range m � 3s and m þ 3s. The normal distribution properties

illustrated by this example are displayed in Figure 4.19.

Suppose the interviewer wishes to know the duration which would be exceeded for one

interview in ten in the long run. In other words, the value d is required such that

PðX � dÞ ¼ 9=10 ¼ 0:9. Duration d may be referred to as the 90th percentile of the

distribution. In order to obtain d, use Calc>Probability Distributions>Normal. . . , select

Inverse cumulative probability and enter 0.9 in the Input constant: window. The

appropriate mean and standard deviation must be specified in the Mean: and Standard

deviation: windows, respectively. On execution the Session window displays the text in
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Panel 4.6. This indicates that d is 50.25 and that approximately one interview in tenwould have

duration in excess of 50minutes.

Alternatively the result may be obtained using Graph>Probability Distribution

Plot. . . >View Probability. On double-clicking the graphic under View Probability

select Normal in the Distribution: window and enter Mean: 40 and Standard deviation:

8. On the Shaded Area tab, withDefine Shaded Area By Probability selected, click on the

graphic under Right Tail and enter Probability: 0.1. The graph in Figure 4.20 results,

confirming the required duration d to be 50.25minutes.

In Section 1.1 the concept of sigma quality level was introduced. Minitab can be used to

compute the entries in Table 1.1 and in Appendix 1. In order to demonstrate the calculations

involved, consider a bottle manufacturing process which is producing bottles with weights (g)

which areN(493, 22) and forwhich the specification limits are 486 and 494 g. The targetweight

can be considered to be 490 g, theweight that is midway between the specification limits. Thus

the specification limits here are two standard deviations away from the target and the process is

off target, on the high side, by 3 g – equivalent to 1.5 standard deviations. The situation is

illustrated in Figure 4.21,created using the Graph>Probability Distribution Plot. . . >
View Probability facility, as described earlier for the creation of Figure 4.16, and Graph

Annotation Tools.

Figure 4.19 Probabilities of values lying within 1, 2 and 3 standard deviations of the mean

for a normal distribution.

Inverse Cumulative Distribution Function  

Normal with mean = 40 and standard deviation = 8 

P( X <= x )        x 

        0.9  50.2524 

Panel 4.6 Evaluation of inverse cumulative probability function.
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It is evident from the diagram that a small proportion of bottles will be nonconforming due

to having weight below the lower specification limit, while a large proportion will be

nonconforming due to having weight above the upper specification limit. These proportions

are F(486) and 1�F(494) respectively, which you should verify to be 0.000233 and 0.308538

respectively. This gives a total proportion nonconforming of 0.000 233 þ 0.308 538¼ 0.308

771 which equates to 0.308 771� 1 000 000¼ 308 771 nonconforming bottles per million.

You should confirm that this is the entry in Table 1.1 corresponding to a sigma quality level of 2

Figure 4.20 Interview duration exceeded on one in ten occasions.

Figure 4.21 Bottle weight distribution with specification limits superimposed.

116 STATISTICAL MODELS



(apart from a small rounding discrepancy). Note that in Figure 4.21 has displayed probability

0.6912 for conformance corresponding to probability 1� 0.6912¼ 0.3088 for nonconfor-

mance, confirming the above result on rounding.

Because the specification limits in the scenario discussed here are two standard deviations

away from the target the process is said to have a sigma quality level of 2. The convention in Six

Sigma is to quote the nonconformities per million opportunities when the process is operating

with a mean that is ‘off target’ by 1.5 standard deviations. The use of a 1.5s ‘shift’ in the

calculation of sigma quality levels is controversial (Ryan, 2000, p. 522). As an exercise you

should verify that the proportion is the samewhen themean is off target, on the low side, by 1.5

standard deviations. A series of calculations of this type can be used to complete Table 1.1. A

more comprehensive table is given in Appendix 1.

Figure 4.22 illustrates a ‘Six Sigma’ process, i.e. one for which the specification limits are

six standard deviations away from the target. As illustrated by the solid curve, the process is

operating ‘on target’. Clearly with such a process the location could shift by an appreciable

amount without any real impact on the proportion of product falling outside the specifications.

For this process, a shift of 1.5 standard deviations from the target would lead to 3.4

nonconforming items per million. The dotted curve illustrates the distribution that would

occur were the mean to shift upwards by 1.5 standard deviations.

Finally, consider again the N(40, 82) distribution used to model the duration, X (minutes),

of interviews. You should verify, using Minitab, that PðX < 0Þ ¼ 0:000 000 3. Thus, accord-
ing to the model, there is a very small probability that the duration of an interview could be

negative, which is impossible. The probability density function of a normal distribution is

defined for all values of the random variable beingmodelled, whether the values are feasible or

not. Thus themodel is ‘wrong’ in the sense that it allows the possibility of an impossible event.

Yet the model could prove valuable to the team planning the survey and evaluating the

performance of interviewers. Hence the comment quoted at the very beginning of the chapter

is relevant.

Figure 4.22 A ‘Six Sigma’ process operating on target.
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4.3 Distribution of means and proportions

4.3.1 Two preliminary results

There are a number of results required for the development of control charts and of other

statistical methods of value in quality improvement. These results will be introduced in this

section, but theory and mathematical detail will be avoided. Two preliminary results

are required.

The first preliminary result (Box 4.1) concerns multiples of a random variable.

Informal justification of the numerical aspects may be obtained by converting the height

data in inches, given in theMinitab pulse data set referred to earlier, tometres. Thismay readily

be done usingCalc>Calculator. . . to multiply the given heights in inches by the conversion

factor 0.0254. The means and standard deviations of the two sets of height measurements are

displayed in Panel 4.7. The reader is invited to verify that multiplication of the mean and

standard deviation of the heights in inches by 0.0254 yields themean and standard deviation of

the heights in metres.

The second preliminary result (Box 4.2) concerns sums of independent random vari-

ables. If two random variables are independent then knowledge of the value of one does not

yield any information about the value of the other. Independent random variables have zero

correlation. However, the converse is not true. In words, the results summarized in Box 4.2

state that:

. the mean of the sum of a set of independent random variables is the sum of the

their means;

. the variance of the sum of a set of independent random variables is the sum of

their variances.

Suppose that X is a random variable and that a second random variable, V, is defined as

V¼ kX, where k is a positive constant. Two important results are:

mV ¼ kmX ; sV ¼ ksX:

Thus if k is thought of as a scale factor for converting values of X to values of V then that

same scale factor must be used to convert the mean and standard deviation forX into those

for V.

If X is normally distributed, then so is V.

Box 4.1 Multiple of a random variable.

Descriptive Statistics: Height, Height (m)  

Variable      Mean   StDev 

Height      68.717   3.659 

Height (m)  1.7454  0.0929 

Panel 4.7 Descriptive statistics for height measurements.
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Consider an assembly operation for automatic telling machines with three phases: set-up,

build and test. Let the durations of each phase havemeans 15, 90 and 18minutes, respectively.

Suppose that the durations are independent of each other and that all three have uniform

distributions with ranges of 6, 12 and 6minutes respectively. This means that set-up is equally

likely to take any time from 12 to 18minutes, build any time from 84 to 96minutes and test any

time from 15 to 21minutes. For a uniform distribution the probability density function is

constant over the range of possible values and zero elsewhere. Statistical theory tells us that the

variance of a uniform distribution is one-twelfth of the square of its range. Hence the variances

for the durations of set-up, build and test will be 3, 12 and 3minutes respectively.

According to the theory in Box 4.2, the mean and variance of the sum of a set of

independent random variables are obtained by summing the individual means and the

individual variances, respectively. Thus theory predicts that the total duration for the operation

will have mean 15þ 90þ 18¼ 123 and variance 3þ 12þ 3¼ 18, which corresponds to a

standard deviation of 4.24minutes.

Minitab enables samples to be generated from uniform distributions so the theory can be

checked by simulation of a series of assembly operations. Having named columns C1, C2, C3

and C4 respectively Set-up, Build, Test and Total, one can proceed to simulate data for 10 000

assembly operations as indicated in Figure 4.23. Use is required, three times, of Calc>
Random Data>Uniform. . . . Figure 4.23 shows the procedure about to be implemented for

the third time in order to generate 10 000 values for the duration of the Test phase. Note the

specification Lower endpoint: 15 and Upper endpoint: 21. The Total duration can then be

computed using Calc>Row Statistics. . . , with Sum selected as Statistic, Set-up, Build and

Test entered in the Input variables:window and Total entered in the Store result in:window.

The descriptive statistics displayed in Panel 4.8 were obtained using Stat>Basic

Statistics>Display Descriptive Statistics. . . . Under Statistics. . . only Mean, Standard

deviation and Variance were checked. The mean and standard deviation of the sample of

10 000 values of Total were 122.90 and 4.23 for the simulation carried out by the author. These

are close to the values of 123.00 and 4.24 for the populationmean and standard deviation given

by the results on sums of random variables. The reader is invited to carry out the simulation for

her/himself.

The histograms of the simulated data in Figure 4.24 illustrate the uniform distribution of

the component times and also that the distribution of the Total duration has the appearance of a

Let X1, X2, X3, . . . , Xp be a set of independent random variables and let T¼X1 þ
X2 þ X3 þ . . . þ Xp, i.e. T is the sum of the set of random variables. Let X1, X2, X3, . . . ,

Xp have meansm1,m2,m3, . . . ,mp and variances s
2
1;s

2
2;s

2
3; . . . ;s

2
p respectively. Then the

mean and variance of T are respectively

mT ¼ m1 þm2 þm3 þ . . . þmp;

s2
T ¼ s2

1 þs2
2 þs2

3 . . . þs2
p:

If the Xs are normally distributed, then T is normally distributed.

Box 4.2 Sum of independent random variables.
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normal distribution – a fitted normal distribution curve is shown. This gives an indication of the

importance of the normal distribution – the sum of a series of independent random variables

with nonnormal distributions can often be adequately modelled by a normal distribution. If

each of the independent random variables is normally distributed then the sum of the random

variables is also normally distributed.

4.3.2 Distribution of the sample mean

The sample mean is widely used in control charting and other statistical methods of value in

Six Sigma quality improvement. Box 4.3 summarizes the important results required for the

sample mean. These results may be obtained by considering the mean of a random sample as a

multiple of a sum of independent random variables.

If the reader finds the mathematics a bit daunting then perhaps some further Minitab

simulation will aid understanding. A set of 1000 random samples from the N(60, 22)

Figure 4.23 Generating data from a uniform distribution.

Descriptive Statistics: Set-up, Build, Test, 
Total  

Variable    Mean  StDev  Variance 

Set-up    14.993  1.746     3.048 

Build     89.913  3.444    11.859 

Test      17.989  1.731     2.996 
Total     122.90   4.23     17.86 

Panel 4.8 Descriptive statistics for simulated data.
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distribution may be simulated using Calc>Random Data>Normal. . . to create four

columns of 1000 values from the specified distribution. Each row of four values may then

be considered to be a sample of n¼ 4 values from the N(60, 22) distribution. Calc>Row

Statistics. . . , with Mean as the selected Statistic, may then be used to compute the 1000

sample means and to store them in a column namedMean. The dialog involved in this last step

is displayed in Figure 4.25.

The theory in Box 4.3 indicates that the mean of the population of sample means will be

m�X ¼ m ¼ 60 and that the standard deviation of the population of sample means will be

s�X ¼ s=
ffiffiffi

n
p ¼ 2=

ffiffiffi

4
p

¼ 1. The theory also indicates that the distribution of the sample mean

will be normal.

The histogram of the sample means, with fitted normal curve, shown in Figure 4.26

supports the theory. Note that the mean of the sample means of 60.03 and that the standard

deviation of the sample means of 1.007, reported in the text box at the top right-hand corner of

the display, are both close to the population values given by theory of 60.00 and 1.000,

respectively. Again the reader is invited to carry out the simulation for her/himself.

Box 4.4 gives a very important result, the central limit theorem, concerning the

distribution of the sample mean when the random variable of interest is not normally

distributed. As an illustration of the central limit theorem, consider a weaving process that

operates continuously and for which filament breaks occur at random at the rate of 2 per hour.

This means that the number of breaks occurring per hour will have the Poisson distribution

with parameter 2. Statistical theory shows that it follows that the time interval, in minutes,

between filament breakswill have the exponential distributionwithmean 30. (No details of the

Figure 4.24 Histograms of simulated data.
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Consider a random sample X1, X2, X3, . . . , Xn of a random variable X with mean m and

standard deviation s. The sample mean �X is also a random variable and is given by:

�X ¼
Pn

i¼1 xi

n
¼ 1

n
ðX1 þ X2 þ X3 þ . . .þ XnÞ ¼

1

n
T

Thus the sample mean can be considered to be a multiple (scale factor 1/n) of the total

T =X1 þ X2 þ X3+ . . . þ Xn of n independent random variables.

Application of the two preliminary results yields themeanmean and standard deviation of

the sample mean as follows:

m�X ¼ 1

n
ðmþ mþ mþ . . .þ mÞ ¼ 1

n
nm ¼ m;

s�X ¼ 1

n
� sT ¼ 1

n

ffiffiffiffiffiffi

s2
T

q

¼ 1

n
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ s2 þ s2 þ . . .þ s2
p

¼ 1

n
�

ffiffiffiffiffiffiffiffi

ns2
p

¼

ffiffiffiffiffi

s2

n

v

u

u

t ¼ s
ffiffiffi

n
p :

Thus the mean and standard deviation of the sample mean are respectively m and s=
ffiffiffi

n
p

.

Many authors use the phrase ‘standard error’ in place of standard deviation in

this context.

Box 4.3 Distribution of the sample mean.

Figure 4.25 Calculation of the sample means.

122 STATISTICAL MODELS



exponential distribution are provided in this book.) Scrutiny of log sheets maintained by the

process operators yielded 1000 time intervals between filament breaks that are plotted in

Figure 4.27 in the form of a density histogram with the probability density function of

the exponential distribution with mean 30 superimposed. This type of distribution is

positively skewed.

Minitab was used to simulate 1000 samples of n¼ 4 intervals between breaks and also

1000 samples of n¼ 25 intervals between breaks. The sample means were calculated and are

displayed in the histograms in Figure 4.28 with fitted normal curves superimposed. With

sample size n¼ 4 the distribution of the sample mean is positively skewed and the distribution

is not normal. However, with sample size n¼ 25 the distribution of the sample mean is much

more symmetrical and the normal distribution appears to provide and adequate model for the

distribution of the sample mean.

The major importance of the central limit theorem is that it enables probability statements

to be made about means of reasonably large samples regardless of whether or not the

distribution of individual values is normal. As an example, consider a type of car tyre with

life nonnormally distributed with mean 20 000miles and standard deviation 1600miles.

Suppose that we wish to obtain the probability that a random sample of 64 of these tyres

has mean life of 20 400miles or greater. The solution is as follows.

Figure 4.26 Histogram of sample means with fitted normal curve.

Even if the random variable X is not normally distributed the sample mean will be

approximately normally distributed with mean m and standard deviation s=
ffiffiffi

n
p

. The

larger the sample size n, the better the approximation. This result is known as the central

limit theorem.

Box 4.4 The central limit theorem.
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Let X denote tyre life and let �X denote the mean life of random samples of 64 tyres. By the

central limit theorem �X will be approximately normally distributed with mean

m�X ¼ m ¼ 20 000 and standard deviation s�X ¼ s=
ffiffiffi

n
p ¼ 1600=

ffiffiffiffiffi

64
p

¼ 200. Use of Calc>
Probability Distributions>Normal. . . gives the cumulative probability function value

Figure 4.27 Histogram of intervals between breaks with exponential distribution.

Figure 4.28 Histograms of means of samples of size n¼ 4 and of samples of size n¼ 25.
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0.977 25 so the required probability is 1 � 0.977 25¼ 0.022 75	 1/44. (Alternatively use can

bemade ofGraph>ProbabilityDistributionPlot. . . >ViewProbability.) The conclusion

is that there is a 1 in 44 chance of obtaining amean life of 20 400 or greater for a random sample

of 64 of the tyres. Calculations of this nature lie at the heart of hypothesis testing which

provides important tools for determining whether or not steps taken to improve a process have

been effective. Hypothesis testing is introduced in Chapter 7.

4.3.3 Distribution of the sample proportion

For the development of control charts etc., a formula for the standard deviation of the

proportion of nonconforming items in a sample is required. A proportionmay be considered as

a multiple of a random variable – details are presented in Box 4.5

Consider a scenariowhere samples of 10 items are taken at regular intervals from a process

and checked. Conforming items are denoted by S and nonconforming items by D. The

indicator randomvariableB is defined as having value 0 for a conforming item and value 1 for a

nonconforming item. Table 4.9 gives results for one sample. For this sample the proportion of

nonconforming items is 3/10¼ 0.3. This is also the mean of the sample of 10 values of the

indicator random variable B for the sample. A proportion is a sample mean in disguise! Thus if

the probability, p, of a nonconforming item remains constant as successive random samples are

taken, the central limit theorem indicates that the series of proportions of nonconforming items

Let there be constant probability p that an item is nonconforming and let X denote the

number of nonconforming items in random samples of n items. Thus X will have the

binomial distributionwith parameters n and p, i.e.X has theB(n, p) distributionwithmean

mX ¼ np and standard deviation sX ¼ ffiffiffiffiffiffiffiffi

npq
p

, where q ¼ 1� p.

The proportion of nonconforming items is given byV ¼ X=n ¼ kX, where k ¼ 1=n, so
the theory in Box 4.1 gives

mV ¼ 1

n
np ¼ p;

sV ¼ 1

n

ffiffiffiffiffiffiffiffi

npq
p ¼

ffiffiffiffiffi

pq

n

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ
n

v

u

u

t :

The fact that the standard deviation of a proportion is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ=n
p

is of fundamental

importance in the creation of control charts for proportion of nonconforming items.

Box 4.5 Standard deviation of a proportion.

Table 4.9 Conformance record for a sample of 10 items.

Item No. 1 2 3 4 5 6 7 8 9 10

Status S D S S D S S S D S

Indicator B 0 1 0 0 1 0 0 0 1 0
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will have an approximate normal distribution with mean p and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ=n
p

.

In order to illustrate, Calc>Random Data>Binomial. . . was used to generate 1000

random samples from the binomial distribution with parameters n¼ 100 and p¼ 0.2. Thus

the number of nonconforming items in random samples of 100 components from a process

yielding constant probability 0.2 of a nonconforming item was being simulated for a total of

1000 samples. With Calc>Calculator. . . the simulated counts of nonconforming

items were converted to proportions by dividing by 100. According to the above

theory the proportions will be approximately normally distributed with mean p ¼ 0:2 and

standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ
n

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:2� 0:8

100

r

¼ 0:04:

The histogram of the proportions displayed in Figure 4.29 was created using Graph>
Histogram. . . , the With Fit option being used to superimpose a fitted normal curve. The

mean and standard deviation of the sample of 1000 proportions of 0.2037 and 0.04065

(displayed to the right of the histogram in Figure 4.29) are close to the population values of

0.20 and 0.04 respectively. The normal distribution also clearly provides an adequate model

for the distribution of sample proportions.

The statistical models referred to in this chapter provide the foundations for much of what

follows in this book. Readers who wish to gain a deeper and wider understanding of these

statisticalmodelswould benefit from consulting the books byMontgomery andRunger (2010)

and Hogg and Ledolter (1992).

Figure 4.29 Histogram of proportions with fitted normal curve.
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4.4 Multivariate normal distribution

The multivariate normal distribution provides a statistical model for some scenarios where

two, three or more continuous random variables are of interest. For the case of two random

variables the multivariate normal distribution is referred to as the bivariate normal distri-

bution. A bivariate normal distribution for the two random variables X and Y is specified by the

five parameters mx, my, s
2
x, s

2
y and sxy, i.e. by the means, variances and covariance. (The

symbol sxy denotes the population covariance between random variables X and Y.) If X and Y

have the bivariate normal distribution specified then X has theN(mx,s
2
x) distribution and Y has

the N(my, s
2
y) distribution. These are known as the marginal distributions of X and Y.

Suppose that a blow moulding process for plastic PET 500ml bottles yields bottles with

weight (g) and diameter (mm) having the bivariate normal distribution with means 25.0 and

72.0, variances 0.04 and 0.05 respectively and covariance � 0.03. Thus the covariance matrix

is 0:04 � 0:03
� 0:03 0:05

� �

.

In order to generate some data from this distribution via Minitab, first set up the means in

columnC1. Second, with commands enabled, useCalc>Matrices>Read to specify that the

matrix comprises two rows and two columns and to name it Covariance. The default option

Read from keyboard is accepted. The dialog box is shown in Figure 4.30. On clicking OK,

thematrix can be entered following the data prompts as indicated in Panel 4.9. In presenting the

data to Minitab one must adhere to the matrix pattern of two rows and two columns.

Figure 4.30 Reading data into a matrix.

MTB > Name m1 "Covariance" 

MTB > Read 2 2 'Covariance'. 

DATA> 0.04 -0.03 

DATA> -0.03 0.05 

2 rows read. 

MTB >  

Panel 4.9 Reading a matrix via the keyboard.
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Minitab now has the necessary information to enable simulated data to be generated for,

say, a sample of n¼ 100 bottles. Use Calc>Random Data>Multivariate>Normal as

shown in Figure 4.31. The marginal plot for the sample generated by the author is displayed

in Figure 4.32.

The multivariate normal distribution provides the basis for an important type of control

chart for the monitoring of two or more process variables simultaneously.

Figure 4.31 Generating data from a bivariate normal distribution.

Figure 4.32 Marginal plot of simulated bivariate data.
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4.5 Statistical models applied to acceptance sampling

4.5.1 Acceptance sampling by attributes

Acceptance sampling deals with the inspection and classification of a sample of units selected

at random from a larger batch or lot and the ultimate decision about disposition of the batch –

accept, reject or some other action. Acceptance sampling may be applied to incoming batches

of parts from an external supplier that are to be used in amanufacturing process or to batches of

incomplete product as they proceed from an internal ‘supplier’ to the next stage in a

manufacturing process. In his chapter on acceptance sampling Montgomery (2009) states

that acceptance sampling was amajor component of quality improvement activities at the time

of the Second World War but that more recently ‘it has been typical to work with suppliers to

improve their process performance through the use of [statistical process control] and designed

experiments’. A brief introduction to acceptance sampling is included here as statistical

models discussed earlier in this chapter are applied.

Consider the following single-sampling plan. A random sample of size n¼ 400 units from

a batch of sizeN¼ 40 000 units are inspected, and if the total number of nonconforming units is

less than or equal to the acceptance number c¼ 2 then the batch is accepted; otherwise it is

rejected. Suppose that the process that creates the units currently yields 0.5% nonconforming.

We would therefore expect a batch of N¼ 40 000 units to contain M¼ 0.5%� 40 000¼ 200

nonconforming units. The probability of acceptance of the batch is the probability that a

random sample of n¼ 400 contains 2 or fewer nonconforming units. This probability may be

calculated using Calc>Probability Distributions>Hypergeometric. . . and making the

entries displayed in Figure 4.33.

Figure 4.33 Calculation of probability of batch being accepted.
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The result in the Session window, displayed in Panel 4.10, indicates that the probability of

obtaining 2 or fewer nonconforming items in the sample is 0.677. Thus the probability of a

batch containing 0.5% defective units being accepted is 0.677. (The hypergeometric rather

than the binomial distribution is used to do the calculation because the event probability is not

constant. However, with large batch sizes and low proportions of nonconforming items the

binomial may be used to approximate the hypergeometric. The interested reader will find that

the binomial approximation yields 0.676 677 as compared with the 0.676 686 in Panel 4.10.)

The reader is invited to verify that the probability of accepting a batch that contains 1%

nonconforming units is 0.235 i.e. there is approximately a 1 in 4 chance that a batch containing

1% defective units would be accepted.

A series of calculations yields the table of acceptance probabilities displayed in

Figure 4.34. If there are no defects in the lot then the probability of acceptance is 1.000.

This means that a batch with no nonconforming items is certain to be accepted. (That is of

course desirable! We are, of course, assuming that there are no inspection errors!) The

operating characteristic (OC) curve for the sampling plan is a plot of acceptance probability

versus proportion of nonconforming items (see Figure 4.35).

In order to design a single-sampling plan two concepts are widely used. The acceptable

quality level (AQL) is the poorest level of quality for the manufacturing process that the

customerwould consider acceptable as the average in the long run. The rejectable quality level

(RQL) is the poorest level of quality the customer is prepared to accept in an individual batch or

lot. The RQL is also known as the lot tolerance percent defective (LTPD) and the limiting

quality level (LQL).

Cumulative Distribution Function  

Hypergeometric with N = 40000, M = 200, and n = 400 

x  P( X <= x ) 

2     0.676686 

Panel 4.10 Probability of acceptance of batch with 0.5% nonconforming units.

Figure 4.34 Table of acceptance probabilities.
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For the purposes of illustration, suppose that in a particular scenario AQL is 2% and RQL

is 8%. Suppose, too, that it considered desirable that there should be probability 0.95 of

accepting a lot containing 2% defectives (the AQL) and that there should be probability 0.10

of accepting a lot containing 8% defectives (the RQL). Put another way, this means there

would be a 0.05 probability (1� 0.95) of rejecting a lot containing 2% defectives and there

would be a 0.90 (1� 0.10) probability of rejecting a lot containing 8% defectives. We can

think of the probability 0.05 of rejecting a good batch (with proportion defective equal to the

AQL of 2%) as being the producer’s risk and the probability of and the probability of 0.10 of

accepting a bad batch (with proportion defective equal to the RQL of 8%) as being the

consumer’s risk.

It is desirable, then, in this scenario, to have an OC curve which passes through the points

(0.02, 0.95) and (0.08, 0.10). Nomograms and tables are available to determine appropriate

values for the sample size n and the acceptance number c. Minitab facilitates the calculation

using Stat>Quality Tools>Acceptance Sampling by Attributes. . . with the dialog

displayed in Figure 4.36. Proportion defective was selected under Units for quality levels:,

the alternative choices being Percent defective and Defectives per million. Note that it is not

necessary to specify a lot (batch) size.

The key part of the Sessionwindowoutput is shown in Panel 4.11. The plan involves taking

a random sample of 98 from the batch and acceptance of the batch if the number of

nonconforming items found is less than or equal to 4. It was desired to have the OC curve

pass through the points (0.02, 0.950) and (0.08, 0.100). The latter part of the Session window

output indicates that the best that could be found was the OC curve that passed through (0.02,

0.953) and (0.08, 0.099). The OC curve is also displayed.

The supplied worksheet Unit_Reference_Codes.MTW contains a column named Unit

Reference giving reference codes for a batch of 1200 units. In order to select a random sample

of 98 units one could use Calc>Random Data> Sample From Columns. . . and enter

Number of rows to sample: 98, From columns: ‘Unit Reference’, Store samples in:

Sample. On doing this the author obtained the sequence UO2391, UQ2432, US2428, . . . ,

Figure 4.35 Operating characteristic curve.
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US2446. The reader is invited to try this for her/himself – it is very unlikely that the same

sequence will be obtained!

4.5.2 Acceptance sampling by variables

Rather than simply classifying units as either conforming or nonconforming, it will be possible

in some circumstances to base the decision whether or not to accept a batch on the basis of a

measurement on each unit in the sample taken. Consider glass bottles for which the

specification limits for weight are 485 and 495 g and a scenario where AQL is 0.1% and

RQL is 0.5%with producer and consumer risks of 0.05 and 0.10, respectively. Suppose that the

standard deviation of bottle weight is unknown but that experience shows that bottle

weight may be adequately modelled by a normal distribution. Use of Stat>Quality Tools>
Acceptance Sampling by Variables>Create/Compare. . . with the dialog displayed in

Figure 4.37 is required.

The key part of the Sessionwindowoutput is shown in Panel 4.12. The plan involves taking

a random sample of 160 bottles from the batch, weighing them and calculating the sample

mean and standard deviation. Data are provided in supplied worksheet Bottle_Weight_Sam-

ple.MTW. The reader is invited to verify that sample mean and standard deviation are

respectively 490.94 and 1.18. The two Z-values required in Panel 4.12 may be calculated

Figure 4.36 Designing an attributes single-sampling plan.

Generated Plan(s) 

Sample Size        98 

Acceptance Number   4 

Accept lot if defective items in 98 sampled <= 4; Otherwise reject. 

Panel 4.11 Specification of the required single-sampling plan.
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as shown in Box 4.6. Since both Z-values exceed the critical distance (k value) of 2.80 and

the sample standard deviation (1.18) is less than the maximum allowable standard deviation

(MSD) of 1.66, the decision would be to accept the batch.

Further information on acceptance sampling for both attributes and variables, including

Military Standard plans, may be found in Montgomery (2009) and in the references

cited therein.

Figure 4.37 Designing a variables single-sampling plan.

Generated Plan(s) 

Sample Size                       160 

Critical Distance (k Value)       2.80110 

Maximum Standard Deviation (MSD)  1.65685 

Z.LSL = (mean - lower spec)/standard deviation 

Z.USL = (upper spec - mean)/standard deviation 

Accept lot if standard deviation <= MSD, Z.LSL >= k and Z.USL >= k; otherwise reject. 

Panel 4.12 Specification of the required single-sampling plan.

Z:LSL ¼ Mean�Lower spec

Standard deviation
¼ 490:94� 485

1:18
¼ 5:03

Z:USL ¼ Upper spec�Mean

Standard deviation
¼ 495� 490:94

1:18
¼ 3:44

Box 4.6 Calculation of the Z-values.
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4.6 Exercises and follow-up activities

1. Consider a scenario where a company supplies packaged units to customers. The

following probabilities apply:

PðUnit conforms to customer requirementsÞ ¼ 0:95;
PðPackaging is soundÞ ¼ 0:92;
PðDelivery is on scheduleÞ ¼ 0:90:

Assuming independence, calculate the probability that a customer who orders a unit will

receive it free from nonconformities, soundly packaged and delivered on schedule.

2. The file Transaction.MTWcontains data on a sample of transactions carried out by two

teams, A and B, at a branch office of amajor financial institution. Each transaction was

classified as having status either conforming (C) or nonconforming (N-C) in

terms of the current specifications within the institution. Use Stat>Tables>Cross

Tabulation and Chi-Square. . . to summarize the data. Hence, write down estimates

of the following probabilities for the population of transactions sampled:

PðAÞ;PðBÞ;PðCÞ;Pð�CÞ;Pð�CjAÞ;Pð�CjBÞ. Do you think that status is independent

of team?

3. An injectionmoulding process for the production of digital camera casings yields 10%

defective. Denote by X the number of defective casings in random samples of 20

casings selected from the process output at regular intervals.

(i) State the distribution of the random variable X and its parameters.

(ii) Obtain P(X� 3), P(X> 3), P(X< 3).

(iii) Use Calc>Make Patterned Data> Simple Set of Numbers. . . to set up the

values of x from 0 to 20 in columnC1 as indicated in Figure 4.38. (This facility can

save much tedious typing!)

Figure 4.38 Setting up the sequence of values of x.
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(iv) Tabulate and display the probability function f(x) and tabulate the cumulative

probability function F(x).

(v) Calculate the mean and standard deviation of X.

4. Primary healthcare workers believe that anaphylactic shock reaction to immunization

injections occurs with children in one case in two thousand. Immunization teams carry

adrenalin packs in order to treat children suffering a shock reaction. Calculate, using

Minitab, the probability that two adrenalin packs would be insufficient to treat the

shock reactions occurring in a group of 1200 children.

5. Table 4.10 gives the numbers of goals scored in a the soccermatches played in the 2010

FIFAWorld Cup in South Africa.

(a) Set up the data in Minitab in a column named Goals using the same method as was

used for the V2 flying bomb data and obtain the mean number of goals per match.

(b) Fit a Poisson distribution to the data. (You should find that you obtain expected

frequencies 6.6, 15.0, 17.0, 12.9, 7.3, 3.3, 1.2, 0.4 and 0.2.)

(c) In order to create the type of display in Figure 4.9 set up columns in Minitab as

displayed in Figure 4.39. (Try using Calc>Make Patterned Data>Text

Values. . . to create the column indicating the type of frequency.)

(d) In order to create the chart use Graph>Bar Chart. . . and use the drop-down

menu to select the option Bars represent: Values from a table.

Select Cluster underOne column of values and then complete the dialog boxes as

shown in Figure 4.40. The use of the variable Type for attribute assignment under

Data View means that bars representing observed frequencies in the chart have a

different colour from those representing expected frequencies. Observe the goodfit

of the Poissonmodel to the observed data and note that this indicates that goalsmay

be considered as random events in a time continuum.

(e) Minitab actually provides under Stat>Basic Statistics>Goodness-of-Fit Test

for Poisson. . . a formal method for assessing how well a Poisson distribution fits

Table 4.10 Frequencies of goals per match.

Number of goals scored Number of matches

0 7

1 17

2 13

3 14

4 7

5 5

6 0

7 1

8 or more 0
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Figure 4.39 Data for bar chart creation.

Figure 4.40 Creating a bar chart to compare observed and expected frequencies.
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the data. Enter Variable: Goals, leave the Frequency: window blank and under

Graphs. . . check only Bar chart of the observed and the expected values. A

similar bar chart to the one created earlier is produced, along with the Session

window output in Panel 4.13.

In the procedure followed by Minitab numbers of goals per match with low

expected frequencies are combined so that no expected frequency is less than 5.

Informal support for the provision of a satisfactorymodel by a Poisson distribution

comes from the relatively close match between the lengths of the bars representing

observed frequencies and the lengths of the bars representing expected frequencies

in the chart. Formal acceptance of the Poisson distribution as a satisfactorymodel is

provided by theP-valuewell in excess of 0.05.Details of the chi-squared goodness-

of-fit test used are not provided in this book.

6. Customersofamortgagebankexpect tohavemortgageapplicationsprocessedwithin35

working days of submission.Given that the processing time at the bank can bemodelled

by theN(28, 32) distribution, verify that 99%of applicationswould be processedwithin

35workingdays.FollowingasuccessfulSixSigmaprojectaimedat reducingprocessing

time, itwas found that, althoughvariability in processing timewas unchanged, themean

had dropped to 19working days. The bankwishes to inform prospective customers that

‘99 timesout 100wecanprocess your application inqworkingdays’.Assuming that the

normal distribution is still an adequate model, calculate q.

7. Use of the symbol Z for a random variable having the standard normal distribution,

i.e. the N(0, 1) distribution, is fairly widespread. Many statistical texts use the

notation zp for the value such that PðZ � zpÞ ¼ 1� p. Thus for the case of

p ¼ 0:1; 1� p ¼ 0:9, the required value may be obtained using Calc>Probability

Distributions>Normal. . . with the Inverse cumulative probability option.

Use Minitab to generate the worksheet in Figure 4.41. In order to round the

values of zp to two decimal places click on a cell in the column containing thevalues

to be rounded. Next use Editor>Format Column>Numeric. . . , select Fixed

decimal and change the number of decimal places to 2.

       

Goodness-of-Fit Test for Poisson Distribution  

Data column: No. Goals 

Poisson mean for No. Goals = 2.26563 

No.                  Poisson            Contribution 

Goals  Observed  Probability  Expected     to Chi-Sq 

0             7     0.103765    6.6410      0.019410 

1            17     0.235093   15.0459      0.253777 

2            13     0.266316   17.0442      0.959612 

3            14     0.201124   12.8720      0.098858 

4             7     0.113918    7.2908      0.011595 

>=5           6     0.079783    5.1061      0.156476 

 N  N*  DF   Chi-Sq  P-Value 
64   0   4  1.49973    0.827 

Panel 4.13 Assessing goodness-of-fit of a Poisson distribution.
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8. The supplied worksheet Burst.MTW contains burst strength (psi) data for a sequence

of bottles taken from mould number 67 at regular intervals during a production run.

(i) Create a run chart of the data and note how it provides no indication that mould 67

behaved in other than a stable, predictable manner during the production run.

(ii) Create a histogram of the data with a fitted normal distribution.

(iii) Assess how well a normal distribution models burst strength by performing a

normality test.

(iv) Estimate the proportion of bottles from mould 67 failing to conform to the

requirement that burst strength should be at least 250 psi. (Use the normal

distribution with parameters estimated from the data, i.e. with mean 626.2 and

standard deviation 117.5, to perform the calculation.)

(v) Use the table in Appendix 1 to obtain the sigma quality level for mould 67.

9. In addition to columns and matrices, constants may be used in Minitab. With

commands enabled the calculation, performed using Calc>Calculator and

described towards the end of Section 4.1, may be performed using constants K1 and

K2 as shown in Panel 4.14. Check the calculation involved in Exercise 4.2 using

this method.

Figure 4.41 Worksheet to be created in Exercise 7.

MTB > let k1=0.933189 

MTB > let k2=k1**10 

MTB > print k2 

Data Display  

K2    0.500837 

Panel 4.14 Calculation using constants.
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10. Follow the procedure described in Section 4.4 and simulate your own sample of

weight and diameter data for 100 bottles. Obtain the correlation between weight and

diameter for your sample and compare with the population value calculated from the

covariance matrix used in the simulation.

11. Read the Minitab tutorial material at http://www.minitab.com/en-GB/training/

tutorials/accessing-the-power.aspx?id¼1688&langType¼2057 on acceptance

sampling.

12. A single-sample acceptance attributes sampling plan is required to have a producer’s

risk of 0.06 for an acceptable quality level of 0.5% nonconforming, and a consumer’s

risk of 0.10 for a rejectable quality level of 5% nonconforming. Use Minitab to

determine the appropriate plan.

13. It is desirable that the greatest torque required to loosen the cap on a type of food

container should be 2.5 Nm. For producer’s risk of 0.05 for an acceptable quality

level of 1% nonconforming, and a consumer’s risk of 0.10 for a rejectable quality

level of 8% nonconforming, determine the appropriate plan. Use Minitab to confirm

that the sample size required is 27 and that the critical distance is 1.81. Data for a

sample of 27 containers from a lot is provided in Torque.MTW. Verify that Z.

USL¼ 2.58 and that therefore the lot would be accepted. Confirm this

using Stat>Quality Tools>Acceptance Sampling by Variables>Accept/

Reject Lot. . . .

EXERCISES AND FOLLOW-UP ACTIVITIES 139


